

Excalibur
Whitepaper

Last edit: 22.5.2019
mailto: xclbr@xclbr.com
https://getexcalibur.com

mailto:xclbr@xclbr.com
https://getexcalibur.com/

Table of contents

Table of contents 1

Introduction 2

Excalibur Design 3

Excalibur Components 4

Excalibur Topology 5

Deployment considerations 6

Certificates 8
Cryptographic operations 9
Token TLS certificate initialization 10
Client TLS certificate initialization 11

Policies and Factors 13
Factor Verification 14

Excalibur Actions 15

Registration 16
Self Registration using password 16
Registration by Admin, Manager or Service Desk Operator 18

Authentication 20
Getting/Setting Credentials 22
Dynamic Passwords 23

Authorization 24

Verification 26

Factor reset 28

1

Introduction

Excalibur utilizes the user’s smartphone to act as a secure hardware token for any and all
authentication and authorization needs. The ultimate goal is to move all forms of
authentication and authorization away from passwords, replace them seamlessly with
smartphone-based strong but user friendly multi-factor authentication. Excalibur unique
value is in providing backward compatibility with all the applications, Operating Systems
(OS) and services used today thus creating a bridge between the password-based present
and password-free future.

One of the core innovations of Excalibur is its ability to defeat all attacks on credentials as
Excalibur is able to automatically change a password on each login. In the Excalibur user
flow – the password is no longer entered by the user – the user never even knows the
password, it is just a random string used in the background, seamlessly injected into the
login process by Excalibur. The user instead just interacts with the smartphone – using it to
provide various authentication factors as required by the defined security policy.

Clearly for such scheme to work - compatibility is the decisive factor. Excalibur supports all
major platforms and authentication protocols – yet there always might be some legacy apps
that require custom integration. To deal with such situations and allow for a gradual rollout -
Excalibur supports on-demand displaying of a randomly generated password after
successful authentication. This means even if there are systems not supported by Excalibur,
the user will just need to retype a OTP password which will be changed after use.

There are several ways how Excalibur is able to handle on-boarding, either via sending a
registration QR via email or if password based authentication is still used self-registration
can be performed.

During self-registration, the user is asked to provide the current password. This password is
used for a purpose of authenticating the user – at the moment when initialization is
performed – the user is still using password based authentication. Password is verified – and
changed automatically.

2

Excalibur Design

Excalibur was designed to overcome limitations of existing authentication systems, core
design elements can be summarized as:

- Straightforward user experience with no room for error or the possibility for the user to
delegate access – eliminating human element weaknesses and exploitation attacks such as
social-engineering or phishing.

- Elimination of passwords as a mean of User authentication – thus no more passwords to
remember.

- Replacing static passwords with a distributed PKI scheme – passwords are still used
on background to provide legacy compatibility with all the password-based systems used
today but can be dynamically changed on each use thus degrading their security value to
one-time passwords, thus no more passwords to steal / reuse.

- Physical security and peer-verification – by “freeing” authentication from passwords,
unique novel authentication / authorization flows are possible – colleagues / managers are
able to verify directly from their mobile phone that you are really you instead of having to wait
for IT Security to react in case of any security incident / policy violation - thus allowing for
stricter policies, yet dynamically adjusting to real life needs.

- Avoiding single point of failure – the system must be fail-safe from both reliability and
security perspectives even in worst case situations.

- Reliability perspective – User must always be able to login in any online or offline
situation even if any / all Excalibur components fail.

- Security perspective – even if any single Excalibur component is fully compromised, the
system function must not be affected, this is accomplished by distributed storage of
credentials (an XOR random scheme, protecting data at rest) and a distributed PKI scheme
providing means to verify authenticity of each action and event in a distributed manner,
where every action has to be signed and verified by multiple separate components -
meaning that even if Excalibur Server would be totally compromised attacker would not be
able to gain access to any Client or impersonate any Token.

3

Excalibur Components

1. CA - Excalibur Certificate Authority issues certificates to other Excalibur components,
for security reasons - Excalibur provides CA as a cloud service, in specific cases can
be deployed on-premise.

2. Server - provides a persistent network & storage central point, must be reachable by
all components, also provides the Management Interface - Dashboard.

3. Token - Excalibur uses the smartphone as a security token, that is why we call the
smartphone with Excalibur application the Excalibur Token. It is used for interaction
with the User - entering authentication factors, showing session history and providing
capability to remotely lock / terminate active sessions. Excalibur Token utilizes
phone-based biometry and hardware-backed secure element whenever possible.

4. Client - in the context of Excalibur - Client is any end-point where the User logs into
utilizing the Token.

5. Facade - Active Directory integration component, must be installed on at least one
Active Directory server, runs as a system service and integrates with AD via
Directory Replication Service (DRS) Remote Protocol with fallback to LDAP.

6. Company - means organization in which all the components (Server, Token, Client,
Facade) are deployed.

7. User - is the end-user which is using Excalibur to Authenticate, Authorize or Verify.

4

Excalibur Topology

5

Deployment considerations
Excalibur utilizes TLS over TCP. Server listens on the following ports:

1) Application server port - 6632/TCP - must be reachable by all clients and tokens,
thus ideally reachable from public Internet.

2) Facade port - 65321/TCP - must be reachable only from the Active Directory Server

on which Facade component is installed. Facade connects to the Excalibur Server
on this port.

3) Dashboard port - 443/TCP - web (HTTPS) management dashboard must be

reachable from management LAN only, used only by Administrators.

4) Static web content port - 8443/TCP - used to serve static components necessary
for integration to web-based systems such as ADFS, Citrix etc, the visibility of this
port should match the visibility of the systems that will load the static content, thus if
for example, ADFS is reachable from public Internet, this port must be reachable
from the Internet too.

Specified port numbers are default port numbers and can be changed.

Excalibur connects to push notification servers to send push notifications to registered
Tokens. Firewall must be configured to allow this Excalibur Server outgoing communication.

Excalibur can use built-in MySQL database or it can use any of the following database
engines:

1) MS SQL
2) Oracle SQL
3) MySQL

MySQL is the preferred DB option. Firewall must be configured to allow this Excalibur
Server outgoing communication.

Excalibur Server runs on Node.js, always on the latest stable Node.js release at the time of
deployment. Excalibur ships with static build of Node.js and with all the required packages
pre-packaged - as all packages used are inspected by hand.

The preferred Excalibur Server Operating System is the latest Ubuntu Server LTS at the
time of deployment. Excalibur can ship as a virtual machine, container or it can be deployed
from sources on a pre-configured machine. Other Linux distributions can also be used with
prior notice before deployment for compatibility testing.

6

Pilot deployment HW requirements for the Excalibur Server are:
- 4 CPU cores
- 4 GB of RAM
- 20 GB of disk for OS / application / internal DB use.

Facade must be installed on an Active Directory Server in the domain where the pilot users
are and pilot machines are domain-joined. Facade does perform cryptographic operations
for which the AD Server should have sufficient CPU capacity to accommodate. The AD
Server on which Facade is installed on can be any Windows Server 2008R2 and newer.
Facade is 64 bit only.

Windows is the preferred Client OS,

Client OS can be any Windows 7 / Windows 2008R2 and newer. Both 32 and 64 bit OS
versions are supported.

Token support considerations:

1) Android 5.0 is the oldest supported version
2) Android 6 and newer are preferred due to native fingerprint support
3) iOS 8 is the oldest supported iOS version
4) iOS 9 and newer are preferred due to Secure Enclave support
5) Hardware biometric sensor is strongly preferred on all devices

7

Certificates

1. Server certificate
a. issued by CA, included in the installation package
b. different for each company
c. privateKey is known only to Server
d. used for mutually authenticated TLS and for Signing the DB entries
e. publicKey can be obtained by any authenticated component from Server

2. Facade certificate

a. issued by CA, included in the installation package
b. different for each company
c. privateKey is known only to Facade
d. used for mutually authenticated TLS and for Signing the DB entries
e. publicKey can be obtained by any authenticated component from Server

3. Token certificate

a. built-in - used for first TLS connection to Server
b. issued - issued by Server, used for all consecutive TLS connections to

Server
c. both built-in and issued certificate private keys are known only to Token

4. Client certificate

a. built-in - used for first TLS connection to Server
b. issued - issued by Server, used for all consecutive TLS connections to

Server
c. Used for encrypting / decrypting Token cryptopart
d. publicKey can be obtained by any authenticated component from Server
e. both built-in and issued certificate privateKeys are known only to Client

5. User certificates

a. userCompany certificate
■ issued by CA during registration
■ privateKey is known only to Token
■ used for Signing the DB entries
■ publicKey can be obtained by any authenticated component from

Server

b. userClient certificate
■ issued by CA during registration
■ privateKey is known only to Token
■ used for Signing the DB entries and User Intents
■ publicKey is only shared with paired clients

8

Cryptographic operations

Signing the DB entry means converting the DB entry to JSON format (sorting keys
alphabetically), generating SHA512 hash from the JSON string and then RSA encrypting it
with private key.

Signature = RSA_Private_Encrypt(privateKey, SHA512(JSONsort(DB entry)))

Signatures can be chained creating signature chain so each entry can be signed by multiple
parties.

Verification of the DB entry signature means converting the DB entry to JSON format
(sorting keys alphabetically), generating SHA512 hash from the JSON string and then
comparing it to the RSA decrypted signature with known public key of the signatory for each
of the signatures from the signature chain. Each certificate used is verified against CA chain.

Encryption / Decryption using RSA - in Excalibur context, data being encrypted is never
longer than the key, thus RSA can be used to encrypt the whole data. Optimal Asymmetric
Encryption Padding (OAEP) is used as the padding scheme. By default, all RSA operations
use 2048 bit key length.

All certificates are issued utilizing Certificate Signing Requests (CSR).

AES is utilized with 256 bits key size.

9

Token TLS certificate initialization

1. Token establishes mutually authenticated TLS connection (verified by built-in CA
chain) to the Server using built-in certificate issued by CA.

2. Server verifies the Client based on defined policy (for example Client must be

connecting to the Server from Internal network).

3. Server issues certificate for the token containing L=companyID, OU=token,
CN=tokenID, using serverPrivateKey and sends it back to the Token.

4. Token reconnects using newly issued certificate and Server authenticates it.

10

Token DB Entry

tokenID uint64 random id generated by Server

uid string unique identifier

name string token name

platform string Android, iOS, WindowsPhone

certificate string tokenPublicKey certificate used for TLS connection

active uint active status (0 / 1)

signature string Server Signature of the Token DB entry

Client TLS certificate initialization

1. Client establishes mutually authenticated TLS connection (verified by built-in CA
chain) to the Server using built-in certificate issued by CA and sends its name, uid,
domainGUID, objectSID which are read from AD using LDAP thus proving that the
Client is indeed domain-joined, further verifications are performed by inspecting
Kerberos tickets and system registry to verify the identity of the Client.

2. Server verifies the Client based on defined policy (for example Client must be
connecting to the Server from Internal network).

3. Server forwards the received data to the Facade.

4. Facade verifies that such client (name, uid, domainGUID, objectSID) is known to
ActiveDirectory domain, generates Client DB entry to be stored in DB and signs the
DB entry with facadePrivateKey and sends it to the Server.

5. Server verifies the Client DB entry signature using facadePublicKey, stores the

entry in DB and issues certificate for the client containing L=companyID, OU=client,
CN=clientID, using serverPrivateKey and sends it back to the Client.

6. Client reconnects using the issued client certificate and Server authenticates it.

11

Client DB Entry

clientID uint64 random id generated by Facade

uid string unique identifier

name string client name

type string client type (workstation / web / ...)

data string additional json encoded data (domain, objectGUID, ...)

certificate string clientPublicKey certificate used for TLS connection

active uint active status (0 / 1)

signature string Facade Signature of the Client DB entry

12

Policies and Factors

Policy is a set of rules specified for an action performed by Excalibur User which needs to be
fulfilled to allow the action. Policy can specify which factors need to be provided by the user,
allows the action to be performed just on some subset of clients, inside specified set of
geofences, and / or at the right time and day of a week.

Policies can contain any of the following rules and their combinations:

1. Factors
a. Fingerprint
b. PIN
c. Face recognition

2. Geofences - subset of geofences where user must be physically located to perform
the action

3. Clients - subset of clients on which the action is allowed to be performed
4. Time of day
5. Day of week
6. IP address of the client
7. IP address for the token
8. Additional verification by manager / admin / support center

When registering, Token generates privateKey, publicKey pairs for each factor it supports
using HW-backed secure enclave, publicKey is then signed by Token with
userCompanyPrivateKey and sent to the Server to be stored for Factor Verification.

Fingerprint private-public Key pair is generated in such a way that every future signing of
the data with private key requires fingerprint to be provided to unlock it.

PIN privateKey is only accessible after entering the correct PIN, rate limit is applied both
locally and on the Server.

Location privateKey is used to sign the location sent to the Server.

13

Factor Verification
When verifying the factor for some intent (see Excalibur Actions: User Intent) the
factorPrivateKey is first retrieved from the secure enclave by providing fingerprint or correct
PIN, which is then used to sign intent encoded in JSON format (keys sorted alphabetically).
Factor signature is then appended to the intent and sent to the Server which can verify that
signature with factorPublicKey for the given user and factor.

When verifying location {latitude, longitude, accuracy} JSON is signed with
locationPrivateKey and sent to the Server to prove that location was indeed reported from
the Token.

Every Excalibur action is represented by intent DB entry which is signed by the User with
userCompanyPrivateKey and sent to the Server. Server verifies the intent’s signature and
user's right to perform the requested action, then asks the User to provide all necessary
factors according to the matching security policy.

Intent authentication factor checking is performed by the intent being signed on the Token
using the privateKey of the Authentication factor used to confirm it. Multiple factors and their
combinations are supported which is represented by multiple signatures of the intent. Server
verifies the intent signature(s), verifies it’s matching the intent being confirmed, signs the
intent using serverPrivateKey, stores the intent in DB and forwards it to the target
component which verifies the intent and policy before executing performed action.

Policy together with the signed intent and factor signatures of the intent can be then easily
verified by each component participating in the processed action, and if just one component
fails to verify all the signatures in the signature chain, the action is immediately stopped.

14

User Intent

tokenID uint64 tokenID generated by the Server

userID uint64 userID from userCompany certificate, verificator userID

accountID uint64 accountID to use while performing action, 0 for verification

action string “registration” / “authentication” / “authorization” / “verification”

actionToken uint64 actionToken

targetID uint64 clientID for authentication, userID of initiator for verification

targetSignature string userCompany Signature of the target entry (client, user)

timestamp uint64 current timestamp

signature string userCompany Signature of the user intent

Excalibur Actions

1. Registration
User needs to register first to perform any other action using Excalibur. During first
registration, private-public pairs for factors are created and set for the Token.

2. Authentication
Every Excalibur Authentication is intent-based, where the User intent is performed by
scanning the dynamically changing (by default every 15 seconds, with 90 seconds
validity) QR code from the display of the device where he wishes to login to. The QR
code contains companyID, clientID, authenticationToken and pairingToken and by its
dynamic nature provides a proximity feature - the user must be physically at the
device to be able to scan it as it has limited time validity. After authentication factors
are successfully verified - password is securely reconstructed at the Client and
injected into the login process.

3. Authorization
Every Excalibur Authorization is push notification based, for example, VPN-login
where username needs to be entered will trigger a push notification to the Token of
the User specified by the username. On the Token, the User is asked to confirm the
given action with the exact specification of what is being confirmed and
authentication factors are requested. RADIUS is the primary use case of Excalibur
Authorization. In these cases, no password is reconstructed as no password is
required.

4. Verification
Verification is a special action where the User (Verificator) is confirming another
User's’ (Initiator) identity directly from his mobile phone, either by scanning a QR
code of the initiator phone or by receiving a push notification or using the
Management Dashboard. Verification can be configured as a required action for
every policy violation, it can be used for PIN reset, registration or login with policy
violation. The Verificator confirms the action using his authentication factors and
signs the action with his signature. Every policy change is also understood as
verification of the change by an Admin.

5. Factors Reset
Registered Users have an option to reset their authentication factors on their Tokens.
Firstly, authentication factors are verified based on the security policy and if it
succeeds, User proceeds to set new factors.

15

Registration

Self Registration using password

1. User begins self-registration by entering his credentials on any Client connected to
the Server. Client verifies the credentials using system methods, on success sends
the registration request containing the domain, username and password encrypted
by facadePublicKey to the Server.

2. Server forwards the received data to the Facade.

3. Facade decrypts the password using its facadePrivateKey, verifies the credentials
for the account against Active Directory, generates the Account DB Entry,
Registration DB Entry, signs them with facadePrivateKey and sends them back to
the Server.

4. Server verifies the signatures, stores the Account DB entry and Registration DB

entry and generates Registration QR Code containing encrypted payload
consisting of companyID, registrationID and server IP address which is then sent
back to the Client.

5. Client renders the Registration QR code.

16

Account DB Entry

accountID uint64 random id generated by Facade

uid string unique identifier

clientID uint64 0 for AD account, clientID for local account

type string account type (active directory / local / ...)

data string additional json encoded data (username, domain, objectGUID, ...)

username string username / domain\username / email / ...

active uint active status (0 / 1)

signature string Facade Signature of the Account DB entry

Registration DB Entry

registrationID uint64 random id generated by Facade

userID string 0 for any user, userID for a specific user only

accountID uint64 accountID

creator string registration origin - client / dashboard / ...

validUntil uint64 validity timestamp - max 24h from creation

active uint active status (0 / 1)

signature string Facade Signature of the Registration DB entry

6. User using his Token scans the generated Registration QR code, decrypts it and

proceeds with setting / verifying his factors (face, fingerprint, pin, location). After
successful factor verification / setup - registrationID is sent to the Server.

7. Server retrieves stored Registration DB Entry using registrationID, verifies its
signature and generates registrationToken = {userID: userID, timestamp:
currentTimestamp, accountID: accountID}) which is signed with serverPrivateKey
and sent back to the Token together with serverPrivateKey signed Registration DB
Entry.

8. Signed Registration DB Entry together with RegistrationToken are forwarded to the

CA by the Token.

9. CA verifies signatures of Registration DB entry proving that both Server and
Facade signed it, on success verifies signature of the registrationToken with
serverPublicKey, verifies that it matches data in Registration DB entry proving its
authenticity, checks timestamp and issues userCompany and userClient
certificates containing L=companyID, OU=user, CN=userID. userCompany and
userClient certificates are then AES encrypted with random key R, R is then
encrypted with serverPublicKey and both are sent back to the Token.

10. Token forwards random key R encrypted with serverPublicKey to the Server.

11. Server decrypts random key R using its serverPrivateKey and sends it back to the
Token.

12. Token decrypts userCompany and userClient certificates using the decrypted
random key R received from Server, decrypted certificates are stored securely at the
Token using system methods, Registration Intent and UserAccount DB Entry is
created and signed with userCompanyPrivateKey. The signed Registration Intent,
UserAccount DB Entry together with userCompanyPublic Certificate are sent to
Server.

17

Registration Intent

tokenID uint64 tokenID generated by the Server

userID uint64 userID from userCompany certificate

accountID uint64 accountID of the registered account

action string “registration”

actionToken uint64 registrationID

targetID uint64 registrationID

targetSignature string userCompany Signature of the Registration DB entry

timestamp uint64 current timestamp

signature string userCompany Signature of the registration intent

13. Server verifies that the userCompanyPublic certificate was issued by the CA, on

success uses it to verify the signature of User Account DB entry, verifies that
information in the issued certificate match Registration / User Account DB entries
then forwards userCompanyPublic Certificate and UserAccount DB Entry to the
Facade.

14. Facade verifies that the userCompanyPublic certificate was issued by the CA, on
success uses it to verify the signature of User Account DB, verifies that information
in the issued certificate match Registration / User Account DB entries, signs the
signature of User Account DB entry with its facadePrivateKey and sends the
updated signature back to the Server.

15. Server may perform additional signing of the UserAccount DB Entry based on
security policies (for example additional verification by Administrator, Manager or
Service Desk operator may follow with each party further signing the signature with
its userCompanyPrivateKey). Then, it stores the updated UserAccount DB Entry
to the DB and informs the Token about successful registration.

Registration by Admin, Manager or Service Desk Operator
1. Administrator, Manager or Service Desk Operator (initiator) begins registration by

selecting the user via Excalibur Dashboard. Server verifies the permissions of the
initiator to perform the registration and then sends the registration request containing
the domain, username and initiator’s UserAccount entry signed by serverPrivateKey
to the Facade.

2. Facade verifies signature of the initiator’s UserAccount entry after that verifies
permissions to perform the registration for the user. On success generates the
Account DB Entry, Registration DB Entry with creator equal to initiator (see step 3

18

UserAccount DB Entry

userID uint64 userID from certificate

accountID uint64 accountID from registration

active uint active status (0 / 1)

signature string UserCompany Signature of the UserAccount DB entry

UserAccount DB Entry

userID uint64 userID from certificate

accountID uint64 accountID from registration

active uint active status (0 / 1)

signature string Facade Signature of UserCompany Signature of the UserAccount DB entry

of Self Registration using password) and sends them back to the Server.

3. Server verifies the signatures and stores the Account DB entry and Registration
DB entry, generates Registration QR Code containing encrypted payload
consisting of companyID, registrationID and server IP address which is then sent to
user’s email address or rendered in Excalibur Dashboard / on Initiator’s token.

4. User using his Token scans the Registration QR Code and continues in step 6 of
Self Registration using password.

19

Authentication

1. Each Client generates new Authentication QR containing companyID, clientID,
authenticationToken and pairingToken by default every 15 seconds, with 90 seconds
validity. AuthenticationToken and pairingToken are random 64-bit unsigned integers.

2. User begins the authentication procedure by scanning the generated Authentication
QR with his registered Token. Token then sends authentication request containing
clientID to the Server.

3. Server then retrieves each linked accounts that can be used to perform
authentication at the Client (clientID) for the user from DB and sends them back to
the Token.

4. User then selects which account (accountID) will be used for the authentication
procedure (if there is only one account it is automatically selected) and replies to the
Server with userClientPrivateKey signed authentication intent for selected account
and token cryptopart T encrypted with facadePublicKey.

5. Server verifies the authentication intent, performs factors verification against

matching authentication policy and if successful, sends server cryptopart S fetched
from DB, token cryptopart T encrypted with facadePublicKey, the client DB entry
and the authentication intent to the Facade.

6. Facade verifies the authentication intent - signature, and data, on success verifies

the signature of the client DB entry, on success decrypts token cryptopart T using
facadePrivateKey, performs XOR operation on cryptoparts S and T to get P (P = S ⊕
T), verifies against Active Directory that P for the given user is correct, on success
generates random passphrase R, and sends AESencrypt(R, P) together with R
encrypted using clientPublicKey fetched from client DB entry to the Server.

20

Authentication Intent

tokenID uint64 tokenID generated by the Server

userID uint64 userID from userCompany certificate

accountID uint64 selected accountID

action string “authentication”

actionToken uint64 authenticationToken

targetID uint64 clientID

targetSignature string userCompany Signature of the Client DB entry

timestamp uint64 current timestamp

signature string userCompany Signature of the authentication intent

7. Server forwards AESencrypt(R, P), Authentication Intent and R encrypted with

clientPublicKey to the Client.

8. Client checks if it has got the userClientPublicKey and userCompanyPublicKey
stored in its secure storage. If not, it proceeds with the Pairing procedure:

8.1. Client sends pairing request containing authenticationToken and tokenID to

the Server.

8.2. Server forwards the pairing request to the Token (tokenID).

8.3. Token retrieves the pairingToken corresponding to the authenticationToken
and sends AES Encrypted userCompanyPublicKey and
userClientPublicKey with pairingToken as passphrase back to the Server.

8.4. As pairingToken is only known to the Token and the Client, Server is unable
to decrypt the certificates, it just forwards them AES Encrypted to the Client.

8.5. Client then using corresponding pairingToken as passphrase AESDecrypts
the userCompanyPublicKey and userClientPublicKey, and securely stores
them.

Using the userCompanyPublicKey Client verifies the authentication intent, then verifies the
Account DB Entry and using the clientPrivateKey decrypts passphrase R, AES Decrypts
using R and gets password P. P is then used to log into the account.

21

Getting/Setting Credentials
1. If the password is not correct, it’s expired or there were no cryptoparts S, T present in

the Authentication request, Client proceeds by asking the User for the current
password for the account (and new one in case of expired password). Client then
verifies the current password submitted by the User (and sets the new password if it
was expired). Domain, username and password encrypted by facadePublicKey are
then sent to the Server and User is being logged in.

2. Server forwards the received data to the Facade.

3. Facade decrypts the password using its facadePrivateKey, verifies the credentials
for the account against Active Directory and generates random S which is then
XORed with the password P so we get T (P = S ⊕ T). Facade then encrypts the token
cryptopart T with userCompanyPublicKey and sends it together with S to the
Server.

4. Server then stores cryptopart S for the account in DB and forwards encrypted token
cryptopart T to the Token.

5. Token then decrypts encrypted T using its userCompanyPrivateKey and stores it
securely.

22

Dynamic Passwords
When Dynamic passwords are enabled, the user passwords are changed automatically after
the last active session is terminated, effectively creating a system using random One-Time
Passwords (OTPs). While there are parallel sessions of a single user on different devices,
the password for that user cannot be changed to avoid SSO-related complications.

1. On each session, termination Client notifies the Server and if there are no more
active sessions for User’s account, Server verifies User’s access to the account -
verifying the signature of UserAccount DB Entry, and forwards it to the Facade.

2. Facade again verifies the UserAccount DB Entry and generates new random
password P for the account. Password P is then XORed with another randomly
generated S so we get T (P = S ⊕ T). Password for the account is then changed by
the Facade to P, token cryptopart T encrypted with userCompanyPublicKey and
server cryptopart S are then sent to the Server.

3. Server stores cryptopart S into DB, and if possible send encrypted token cryptopart
T to the Token - otherwise, it is cached in the DB until Token reconnects.

4. Token receives the encrypted cryptopart T, decrypts it with its
userCompanyPrivateKey and stores it securely in its Secure Storage.

23

Authorization

1. Authorization starts by any supported component (for example RADIUS integration
component) requesting access on behalf of User’s account. Facade receives the
authorization request, generates authorizationToken and forwards it together with
account and component info to the Server.

2. Server fetches accountID for the account, componentID for the component, verifies
authorization request of the component, compares it against policy and sends
authorizationToken, accountID and component entry to the Token via Push message
or via TLS connection if the Token is currently connected.

3. Token receives the authorization request and displays Authorization dialog
(containing Account and Component information) for the User with Cancel and
Confirm options. After confirming Token generates Authorization Intent, sings it with
userCompanyPrivateKey and sends it to the Server.

4. Server then verifies the Authorization Intent, performs factors verification against

matching authorization policy and if successful forwards verified Authorization Intent
to the Facade.

5. Facade again verifies the intent and then sends Access-Granted reply to the
Component.

Supported component can also communicate with the Server instead of Facade. In that
case, some steps in the flow change as follows:

1. Authorization starts by any supported component (for example RADIUS integration
component) requesting access on behalf of User’s account. Server receives the
authorization request, generates authorizationToken, associates it with received
account and component info, and proceeds with the regular step 2.

5. Facade again verifies the intent and then sends Access-Granted reply to the Server.

24

Authorization Intent

tokenID uint64 tokenID generated by the Server

userID uint64 userID from userCompany certificate

accountID uint64 selected accountID

action string “authorization”

actionToken uint64 authorizationToken

targetID uint64 componentID

targetSignature string userCompany Signature of the Component entry

timestamp uint64 current timestamp

signature string userCompany Signature of the authentication intent

6. Server forwards Access-Granted to the Component.

25

Verification

1. Verification starts by a) making any relevant changes via Excalibur Dashboard
(setting new policies, creating geofences, allowing access for User) or b) by some
User performing action (on Initiator’s token) which is not allowed without further
verification (Verification request might be sent to manager or Service desk operator
via push message or TLS connection) or c) by scanning verification QR by verifier.
Server creates Verification DB entry containing the data which is to be verified
(policyID, userID - initiator) and sends it with signed related entries (User entry,
Policy Entry) to Verifier’s token.

2. Verifier’s token verifies (signature of) each related entry and then displays the

content of verification (information about user, details regarding the policy and action
which is to be performed) and asks for user’s confirmation. When confirmed,
Verifier’s token generates verification intent, signs it and any updated DB entry with
its userCompanyPrivateKey, and sends it to the Server.

3. Server then verifies the verification intent, performs factors verification against

matching authentication policy and it verifies the action of the Initiator or updates the
DB entry.

26

Verification DB Entry

verificationID uint64 verificationID generated by the Server

...

 Each entryID related to verification:

policyID,
userID,
violation,
etc...

timestamp uint64 current timestamp

signature string Server Signature of the Verification DB Entry

Verification Intent

tokenID uint64 tokenID generated by the Server

userID uint64 userID from userCompany certificate

accountID uint64 0

action string “verification”

actionToken uint64 verificationToken

targetID uint64 verificationID

targetSignature string userCompany Signature of the Verification DB entry

timestamp uint64 current timestamp

signature string userCompany Signature of the authentication intent

27

Factor reset

1. User begins the factor reset procedure by clicking “Factor reset” button in his
registered Token. Token then generates Factor Reset Intent and sends it together
with factorType to the Server.

2. Server verifies the factor reset intent, performs factors verification against

matching factor reset policy and if successful, asks token to set up new factor.

3. After user provides new factor (PIN,Fingerprint) Token generates privateKey,
publicKey pairs for the factor using HW-backed secure enclave. PublicKey is then
signed by Token with userCompanyPrivateKey and sent to the Server.

4. Server verifies the signature and stores the publicKey for updated factor.

28

Factor reset Intent

tokenID uint64 tokenID generated by the Server

userID uint64 userID from userCompany certificate

accountID uint64 0

action string “reset”

actionToken uint64 flowID

targetID uint64 tokenID

targetSignature string userCompany Signature of the Token DB entry

timestamp uint64 current timestamp

signature string userCompany Signature of the factor reset intent

